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Introduction 
In typical road traffic corridors, freeway systems are generally well-equipped with traffic surveillance 

systems such as vehicle detector (VD) and/or closed circuit television (CCTV) systems in order to gather 

timely traffic information for traffic control and/or management purposes. However, other highway 

facilities in the corridor, especially arterials and surface streets in the vicinity of the freeway, mostly lack 

detector/sensor systems. Yet, most traffic management and control methods/frameworks in the 

literature assume the availability of time-dependent traffic measures (such as counts, flows, speeds, 

etc.) on all links of the corridor. Hence, there is a critical disconnect between the practical reality and 

methodological expectations in terms of detection capabilities. This research seeks to develop a 

mechanism to strategically deploy vehicle detectors to infer network origin-destination (O-D) demands 

using limited link traffic count data. It leads to the problem of the identification of “optimal” locations 

for installing detectors so that maximum system observability is achieved with a limited monetary 

budget. From an integration standpoint, it addresses the question of where to locate detectors on the 

non-freeway facilities so that, in conjunction with the installed detectors on freeways, the entire 

corridor can be managed effectively by obtaining the maximum possible accurate information on traffic 

conditions.  

The primary goal of the first stage of this project is to address the network sensor location problem 

(NSLP) directly so as to obtain the unobserved link flows given the minimum subset of observed link 

flows provided by passive counting sensors. It circumvents the data needs (in terms of turning 

movement proportions or prior O-D structure) or assumptions (on traffic assignment rules) associated 

with the O-D demand estimation problem where the NSLP is a sub-problem. A simple and efficient linear 

algebra based method is proposed to solve the NSLP. Given the link-path incidence matrix to represent 

the network topology, the concept of linear independence in relation to a set of links is used to identify 

the minimum subset of network links to equip with vehicle sensors so as to estimate the flows on all 

links. This subset of links constitutes the “basis” of the vector space of the link-path incidence matrix, 

and the proposed approach is labeled the basis link method. The approach does not require any 

assumption on road users’ route choice behavioral rules and/or traffic assignment principles. Also, by 
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solving the NSLP independently rather than as a sub-problem of a specific application, it allows 

applicability to many link-based applications in transportation planning and traffic management, such as 

pavement management systems, congestion pricing, and link strengthening for disaster response. It can 

also serve as a platform to address broader problems such as network O-D estimation or link travel time 

estimation. 

Findings 
This study proposes a basis link method to address the network sensor location problem under steady-

state traffic conditions. A fundamental contribution of this research is the illustration of a direct 

mapping between the basis link flows and the non-basis link flows, which can be obtained from the 

network structure represented by the link-path incidence matrix. Based on the theoretical investigation 

and numerical analysis, several findings are listed below. 

1. Given the network structure represented by its link-path incidence matrix, a theoretical minimum 

subset of network links provided by the reduced row echelon form (RREF) algorithm does exist, and 

a direct mapping between the basis link flows and the non-basis link flows is also theoretically 

proved.  

2. The study illustrates the possibility of multiple solutions in terms of the set of basis links. However, 

as shown by one of the Lemmas, that does not affect the uniqueness in terms of the inferred link 

flows. 

3. The empirical analysis highlights the primacy of the network topology in determining the set of basis 

links. It also indicates the possibility of an upper bound on the number of basis links based on the 

topology, suggesting that it may not be necessary to equip every link with sensors from a planning 

perspective. 

4. While the number of basis links is related to the network scale in terms of the number of 

links/nodes or used paths under different network topologies, there is no direct correlation between 

the number of links/nodes or used paths in the network and the percentage of links to install 

sensors on. 

5. The sensitivity analysis suggests no direct relationship between the percentage of links to be 

equipped with sensors and the number of links/nodes in a network, though a positive correlation 

between the number of basis links and the number of links/nodes or paths is generally observed. 

Recommendations 
This research has proposed a linear algebraic approach for the determination of the minimum subset of 

equipped links to infer the flows on the unobserved links. The proposed basis link method provides 

network full observability without requiring any assumptions in terms of the knowledge of O-D flows, 

path flows, user route choice behavior, or traffic assignment rules. This property has broader 

implications in terms of potentially aiding in solving a range of problems (such as O-D demand 

estimation, travel time estimation, traffic assignment) in both the static and dynamic contexts. 

Therefore, a straightforward research direction is to estimate O-D demands for a general network, in an 
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integrated manner, based on the (full) link flow information provided by the proposed basis link 

approach. Further, the existence of multiple solutions provides some flexibility for traffic agencies in 

choosing the links to install sensors on. That is, a traffic agency may prefer to install sensors on some 

links because of their importance based on one or more criteria related to objectives such as minimizing 

deployment costs, reducing traffic impacts, or the relative importance of a link (based on the facility 

type or its criticality for disaster response, etc.). In such instances, priority rankings provided by the 

agency can be seamlessly adapted with the proposed basis link method. This is another immediate 

research issue that is worthy of further investigation. 
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CHAPTER 1.  INTRODUCTION 

1.1 Background and motivation 

Information on link flows in a vehicular traffic network is critical for developing 

long-term planning and/or short-term operational management strategies. In the literature, 

most studies to develop such strategies typically assume the availability of measured link 

traffic information on all network links, either through manual survey or advanced traffic 

sensor technologies. In practical applications, the assumption of installed sensors on all 

links is generally unrealistic due to budgetary constraints. It motivates the need to 

estimate flows on all links of a traffic network based on the measurement of link flows on 

a subset of links with suitably equipped sensors. This study, addressed from a budgetary 

planning perspective, seeks to identify the smallest subset of links in a network on which 

to locate sensors that enables the accurate estimation of traffic flows on all links of the 

network under steady-state conditions. Here, steady-state implies that the path flows are 

static. 

1.2 Study objectives 

The primary goal of this paper is to address the network sensor location problem 

(NSLP) directly so as to obtain the unobserved link flows given the minimum subset of 

observed link flows provided by passive counting sensors. It circumvents the data needs 

(in terms of turning movement proportions or prior O-D structure) or assumptions (on 

traffic assignment rules) associated with the O-D demand estimation problem where the 

NSLP is a sub-problem. 
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Also, by solving the NSLP independently rather than as a sub-problem of a 

specific application, it allows applicability to many link-based applications in 

transportation planning and traffic management, such as pavement management systems, 

congestion pricing, and link strengthening for disaster response. It can also serve as a 

platform to address broader problems such as network O-D estimation or link travel time 

estimation. 

1.3 Organization of the research 

The remainder of the paper is organized as follows. Chapter 2 introduces the basis 

link method in the NSLP context. Chapter 3 discusses the associated solution algorithm 

and various properties of the method. Chapter 4 illustrates the characteristics of the 

method and related insights by testing different network topologies/configurations. 

Finally, some concluding comments are provided in Chapter 5. 
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CHAPTER 2.  BACKGROUND AND PROBLEM STATEMENT 

This chapter provides some background information about the NSNP. Section 2.1 

states the NSLP in the context of network link traffic flow and/or path flow estimation. 

Section 2.2 reviews the related work in the literature concerning the network sensor 

location problems. Section 2.3 describes the NSLP specifically investigated in this 

research. 

2.1 Background 

Link flow data in a vehicular traffic network represents valuable information to 

address long-term planning and/or short-term operational needs. For instance, link traffic 

flow measurements can be used to infer a trip origin-destination (O-D) demand table for 

the network (for example, Maher, 1983; Cascetta and Nguyen, 1988; Cascetta et al., 

1993; Ashok and Ben-Akiva, 2002). While the various methods have different degrees of 

capabilities to predict the O-D demand estimates, most of the early literature assumes that 

traffic flows are available for each network link or can be collected at specific locations, 

such as traffic counting stations on a screen line (Wu and Chang, 1996) or cordon line 

(Chang and Tao, 1999). Similarly, deployable dynamic traffic assignment (Peeta and 

Ziliaskopoulos, 2001) frameworks proposed to manage the dynamics of traffic 

congestion typically assume the availability of link traffic flows on all network links in 

the determination of the assignment strategies or related consistency-checking procedures 

(Peeta and Bulusu, 1999; Ben-Akiva et al., 2001; Zhou and Mahmassani, 2005). In 

summary, an implicit assumption for most problems requiring such link flow data is that 

the network is equipped with an extensive advanced traffic management system that 

enables the collection of link flow data on all links.  



 

 

5 

The assumption of a network-wide traffic sensor system may not be realistic for 

practical applications due to the budgetary constraints of traffic management agencies. 

Nevertheless, solution methods for many planning and operational problems associated 

with traffic networks implicitly assume that sensors are installed on all network links. An 

urban network of moderate size can entail substantial costs to deploy a large number of 

sensors. Since the quantity and quality of the collected traffic flow information 

significantly affects the estimation accuracy and reliability of network traffic flow 

estimates, there is a trade-off between the prediction accuracy of network traffic flow 

estimates and the cost associated with the extent of deployment of a sensor system. It 

motivates the need to address the problem of optimal sensor locations under a limited 

budget: Can we identify a minimum subset of sensor installed links and their locations for 

accurate vehicular flow estimates throughout the network ?  This problem or variants 

thereof can be broadly labelled as the network sensor location problem (NSLP). Over the 

past decade, the NSLP has been typically addressed as a sub-problem of broader 

problems related to O-D demand estimation, time-dependent link travel time estimation, 

and operational consistency-seeking procedures. 

2.2 Network sensor location problems 

In the literature, the NSLP has been mostly addressed as a sub-problem of the 

broader O-D demand estimation problem (Yang and Zhou, 1998; Bianco et al., 2001; 

Gan et al., 2005; Yang et al., 2006; Ehlert et al., 2006), rather than as an independent 

problem in the context of link-based applications. Thereby, it has been used to determine 

the minimum number of sensor locations (for example, counting stations), or the optimal 

locations for a given number of sensors, to estimate the O-D demand. Such problems 

typically assume the availability of the turning proportions at a node (e.g. Bianco et al., 

2001), or a link usage proportion matrix (obtained using an appropriate traffic assignment 

procedure) which captures the proportion of O-D trips of a given path that traverse a 

specific link (e.g. Gan et al., 2005). This data is not readily available in many field 

applications. However, such assumptions enable the formulation of the broader O-D 

estimation problem as an integer program (Yang and Zhou, 1998; Gan et al., 2005; Yang 

et al., 2006), a mixed integer program (Ehlert et al., 2006), or a mathematical program 
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which minimizes the cost associated with sensor installation (Bianco et al., 2001). The 

associated NSLP sub-problem has then been typically solved using a combination of 

column generation procedures and branch-and-bound heuristics, or genetic algorithms. 

As part of the O-D estimation problem, Yang et al. (2006) develop models and 

algorithms to address two screen-line based sensor location problems: how to select the 

optimal locations of a given number of counting stations to separate as many O-D pairs 

as possible, or how to determine the minimum number of counting stations and their 

locations to separate all O-D pairs? They require the satisfaction of pre-defined O-D 

covering and link independence rules (Yang and Zhou, 1998) as constraints in the 

formulation of the problems. The O-D covering rule states that the traffic sensors on a 

road network should be located such that a certain portion of trips between any O-D pair 

are observable. The link independence rule states that the sensor locations should ensure 

the linear independence of the traffic counts on the chosen links. They require the 

availability of a link-path incidence matrix and a historical O-D structure to solve these 

problems. 

The NSLP is an analog of the “observability” problem in linear system of 

equations. Castillo et al. (2007, 2008a, 2008b) address the observability problem using 

the algebraic techniques of the null-space method. Castillo et al., 2008c proposed a 

Bayesian updating approach to solve the observability problem in a traffic network, 

where the minimum subset of links is determined to equip with vehicle sensors so as to 

infer the O-D flows and/or unequipped link flows. The Bayesian network model is also 

used to determine the optimal number and locations of the link counters based on a 

maximum correlation criterion. However, these approaches require either a known matrix 

relating link and O-D flows (e.g., the F matrix in Castillo et al., 2008a, 2008b) or route 

choice probabilities given by some traffic assignment rules (e.g., the stochastic user 

equilibrium principle adopted in Castillo et al., 2008c) to formulate the flow conservation 

equation. Further, prior knowledge on O-D flows and model parameters is assumed in the 

initiation of the solution procedure. The unknown O-D and unobserved link flows are 

obtained using O-D and link flows collected at some strategic links equipped with vehicle 

sensors or advanced data collection systems. The network flow estimation results are 
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generally better than those obtained through only link flow observations, since O-D flows 

collected, for instance, via the license plate recognition technique provide more 

information for path flow reconstruction and O-D flow estimation (Castillo et al., 2008d). 

In summary, the algebraic null-space method or Bayesian network model solve 

the network observability problem as a sub-problem of the broader O-D demand 

estimation problem, assuming some known user route choice decisions (e.g. Castillo et 

al., 2008c) and/or prior O-D demand structures (e.g., Castillo et al., 2008d). However, the 

assumptions of prior knowledge on model parameters and/or O-D demands can constrain 

the applicability of these approaches in practice. 

Some studies (e.g., Castillo et al., 2008d; Gentili and Mirchandani, 2005) have 

suggested that the use of active sensors along with techniques such as license plate 

recognition provides more information to determine network path and/or O-D flows. 

However, it is very expensive to deploy a comprehensive infrastructure to actively collect 

traffic flow and path information of the equipped vehicles. Also, the main purpose of 

locating active sensors in a traffic network is to obtain sufficient information on flows on 

specified paths and/or O-D pairs (e.g., Gentili and Mirchandani, 2005), with or without 

link flow information provided by passive counting sensors.  

2.3 NSLP problem statement 

Given the network structure (link-path incidence matrix), we seek to identify the 

minimum subset of links on which to locate sensors so as to infer the flows on all links 

under steady-state conditions. Here, steady-state implies that the path flows are static. 

Hence, the objective is to address the NSLP in a planning context by focusing on long-

term steady-state conditions, motivated by the limited budget available to purchase and 

install sensors. Thereby, the problem is static in nature, and the estimated link flows (for 

example, the AADT or ADT) are based on the average flows on the sensor-equipped 

links over a period of time. 

The primary goal of this paper is to address the NSLP directly so as to obtain the 

unobserved link flows given the minimum subset of observed link flows provided by 

passive counting sensors. It circumvents the data needs (in terms of turning movement 
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proportions or prior O-D structure) or assumptions (on traffic assignment rules) 

associated with the O-D demand estimation problem where the NSLP is a sub-problem. 

A simple and efficient linear algebra based method is proposed to solve the NSLP. Given 

the link-path incidence matrix to represent the network topology, the concept of linear 

independence in relation to a set of links is used to identify the minimum subset of 

network links to equip with vehicle sensors so as to estimate the flows on all links. This 

subset of links constitutes the “basis” of the vector space of the link-path incidence 

matrix, and the proposed approach is labeled the basis link method. The approach does 

not require any assumption on road users’ route choice behavioral rules and/or traffic 

assignment principles. Also, by solving the NSLP independently rather than as a sub-

problem of a specific application, it allows applicability to many link-based applications 

in transportation planning and traffic management, such as pavement management 

systems, congestion pricing, and link strengthening for disaster response. It can also serve 

as a platform to address broader problems such as network O-D estimation or link travel 

time estimation. 
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CHAPTER 3.  BASIS LINK METHOD 

This chapter illustrates an algebraic-based approach to deal with the NSNP.  

Section 3.1 introduces the concepts of “basis” in a vector space and the “rank” of a 

matrix, and illustrate their linkage in the context of the problem. Section 3.2 introduces 

the notion of using a link-path incidence matrix to represent a network structure in the 

context of the proposed basis link method to solve the NSLP. This method is used to 

identify the basis links, and then derive the non-basis link flows through information 

contained in the basis link flows measured using the sensors. 

3.1 The basis 

“Basis” is a key concept associated with a vector space (Friedberg et al., 2003). 

Definition 1. A basis β for a vector space V is a linearly independent subset of V that 

generates V.  

By definition, the dimension l of V is the cardinality of a basis β of V. Then, any 

linearly independent subset of V that contains exactly l vectors is a basis for V. 

A matrix space is also a vector space. The rank of a matrix is defined as below: 

Definition 2. If )(HMA nm , the rank of A, denoted rank(A), is the rank of the linear 

transformation mn HHA : , where H is some field. 

The rank of a matrix has the following properties: 

(i) The rank of any matrix equals the maximum number of its linearly independent 

columns; that is, the rank of a matrix is the dimension of the subspace generated by 

its columns which is called column space. 

(ii) The rank of any matrix equals the maximum number of its linearly independent rows; 

that is, the rank of a matrix is the dimension of the subspace generated by its rows 
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which is called row space. 

(iii)The rows and columns of any matrix generate subspaces of the same dimension 

numerically equal to the rank of the matrix; that is, in a specific matrix the rank of the 

column space equals the rank of the row space. 

(iv) Let A be an (m×n) matrix of rank r. Then mr  , and nr  . 

(v) rank(A
T
) = rank(A) 

If  lBBBβ  , . . . , , 21  is a basis for V and the matrix  lBBBB    21  , then any 

member Vv  can be written uniquely in the form ,Bwv  where  l
T www  , . . . , , 21w  

is a vector of scalar coefficients. Thereby, it is useful to relax the nomenclature and call 

the matrix B along with the set β a basis for V (Stewart, 1998). Then, any matrix nmA  in 

the vector space V can be represented by linear combinations of the elements 

lBBB  , . . . , , 21  in B. The maximum number of linearly independent column (or row) 

vectors in nmA , which represents the rank of nmA , is equal to the number of linearly 

independent vectors of β, which is its cardinality l. This relates the rank of a matrix nmA  

to the cardinality of a basis β. 

3.2 Link-path incidence matrix and basis links 

A link-path incidence matrix is a 0-1 matrix that describes the network structure 

through the spatial relationships between the paths and links of that network. This matrix 

can be represented through a set of column or row vectors. If nmL  denotes the link-path 

incidence matrix with m paths and n links, it can be expressed as: 

 

]     [ 21 njnm LLLLL   

 

where jL  is the j
th

 column vector of dimension (m×1). The basis of the vector space 

associated with nmL  consists of l linearly independent column vectors, and the links 

corresponding to these columns are called the basis links. The remaining links in the 

network are called the non-basis links. If the flows on the basis links are observed using 
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sensors, then by definition of basis, the flows on all links can be inferred through linear 

combinations of the basis link flows. This conceptual platform is used here to address the 

NSLP.  
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CHAPTER 4.  SOLUTION ALGORITHM 

Chapter 4 introduces the solution algorithm for the NSLP. To solve the NSLP, 

Section 4.1 illustrates the concept of “reduced row echelon form” (RREF) (Friedberg et 

al., 2003) to identify the basis links of the link-path incidence matrix. Section 4.2 

discusses the properties of the RREF. An example is provided in to illustrate the 

determination of the basis links of nmL  using its RREF. In Section 4.3, the proof for 

inferring the non-basis link flows from the basis link flows is provided. Section 4.4 

explores implications of multiple solutions in the context of the set of basis links. 

4.1 Reduced row echelon form 

A matrix is said to be in its “reduced row echelon form” if it satisfies the 

following three conditions (Friedberg et al., 2003): 

I. Any row containing a nonzero entry precedes any row in which all the entries are 

zero (if any). 

II. The first nonzero entry in each row is the only nonzero entry in this column. 

III. The first nonzero entry in each row is 1 and it appears in a column to the right of the 

leading 1 in any preceding row. By definition, if the first non-zero number in a row is 

1, it is called the leading 1. 

 

The RREF for the link-path incidence matrix can be obtained using the Gaussian 

elimination algorithm. The associated steps are as follows (Anton, 1984): 

Step 1: Locate the leftmost column of L that does not consist entirely of zeros. 

Step 2: Swap the top row with another row, if needed, to bring a nonzero entry to the top 

of the column found in Step 1. 
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Step 3: If the entry that is now at the top of the column found in Step 1 is , multiply the 

first row by 1/ in order to introduce a leading 1. 

Step 4: Add suitable multiples of the top row to the rows below so that all entries below 

the leading 1 become zeros in that column. 

Step 5: Cover the top row in the matrix and begin again with Step 1 applied to the sub-

matrix that remains. Continue in this way until the entire matrix is in row-echelon 

form. 

Step 6: Beginning with the last nonzero row and working upward, add suitable multiples 

of each row to the rows above to introduce zeros above the leading 1’s. The 

resulting matrix represents the RREF of L. 

 

Let L be an (m×n) matrix of rank r (r > 0) with column vectors L1, L2,…, Ln, and 

let T be the RREF of L. Denote the column vectors of T by t1, t2,…, tn. The RREF T has 

the following properties (Friedberg et al., 2003): 

(a) The number of nonzero rows in T is r. 

(b) For each k = 1, 2, …, r, there is a column vector 
kj

t of T such that kjk
et  , where ke  

is an (m×1) unit column vector whose k
th

 row element is 1. jt  is the j
th

 column vector 

in T. 

(c) The column vectors of L, numbered 
rjjj LLL ,...,,

21
, are linearly independent and 

denote the basis of the vector space associated with L. 

(d) The reduced row echelon form of a matrix is unique. 

 

Next, re-arrange T so that its first r columns are the linearly independent unit 

column vectors; kjk
et   where k = 1, 2, …, r. Then, for consistency, we also re-arrange 

the column vectors 
rjjj LLL ,...,,

21
to be the first r columns in L. Based on the re-arranged 

T and L matrices, the following property holds (Friedberg et al., 2003): 

(e) For each j = 1, 2,…, n, if the j
th

 column vector of T is rreee   ...2211 , then the 

j
th

 column vector of L is 
rjrjj LLL   

21 21 , where r  , . . . , , 21  are the linear 
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combination coefficients. 

 

We now state Lemma 1 assuming the re-arranged T and L matrices.   

Lemma 1. Any column vector ) , . . . ,2,1( njj t  in T can be represented by a linear 

combination of a set of r unit column vectors whose linear combination coefficients  are 

the column elements in jt  corresponding to the r non-zero rows of T. That is, an (m×1) 

column vector T

rj ]0 0    [ 21 t  in T can be represented as 

rrj eeet   2111 .  

Proof. 

By property (a) of the RREF, the number of nonzero rows in T is r, the rank of L. 

By property (iv) of the rank of L, mr  , and nr  ; and by property (iii) of the rank of 

L, the rank of the column space is equal to that of the row space. Let us assume that the 

row rank is r and nm  . Then, by definition mr  . There are two possibilities: mr   or 

mr  . 

(1) The rank of L is equal to the number of rows in L ( mr  ): 

When the rank of L is equal to the number of rows in L, it implies the first r 

column unit vectors in T constitute an (r×r) square unit matrix. Then, by the definition of 

unit column vector, any column vector 
T

rj ]  [ 21  t  in T can be represented as 

rrj eeet   2111 .  

(2) The rank of L is less than the number of rows in L ( mr  ): 

When the rank of L is less than the number of rows in L, by property (a) of the 

RREF, the number of nonzero rows in T is r. It implies that the bottom (m-r) rows of T 

are zero rows. Then, any column vector jt  in T has the form 
T

rj ]00    [ 21 t , 

with the last (m-r) elements being zeros. Also, based on the re-arrangement of T and 

property (b), there is a sub-matrix in T which is an (m×r) unit matrix whose column 

vectors are r unit column vectors e1, e2, …. , er of dimension (m×1). Therefore, any 
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column vector T

rj ]0 0    [ 21 t  in T can be represented as 

rrj eeet   2111 .  

This logic can be repeated if mn  , that is, nr  . 

This completes the proof.                                                                                                    ■ 

4.2 RREF and the basis links 

Property (c) in Section 4.1 indicates how the basis for L can be identified after 

determining its RREF, T. That is, the RREF can be used to identify the set of basis links. 

Now, we demonstrate the procedure for identifying the basis links for a given network 

using the RREF. 

Table 4.1 illustrates the link-path incidence matrix L for the network shown in 

Figure 4.1. The network has 10 nodes and 10 links. Node 1 is the origin node, and nodes 

9 and 10 are the destination nodes. By using the Gaussian elimination algorithm 

described in the previous section, the RREF T of L is obtained, and is shown in Table 

4.2. 

According to property (a) of the RREF, the rank of the link-path incidence matrix 

is 3. Hence, for this network, we need only 3 vehicle sensors for inferring the link flow 

information on all links. Hence, only 30% of the links need to be installed vehicle 

sensors. Further, by property (c), the first, second, and ninth columns (denoted by 21link , 

32link , and 98link ) are linearly independent, and the corresponding links (shown using 

dashed arrows in Figure 4.1) are the basis links. Therefore, we can use the information of 

these three links to completely describe the network structure. By property (e) of the 

RREF, the column vector corresponding to a specific non-basis link in L can be 

represented by a linear combination of the column vectors associated with the basis links 

whose coefficients are identical to the linear combination coefficients used to obtain the 

non-basis column vectors in the RREF of the link-path incidence matrix
1
. 

                                                 
1
 Gentili and Mirchandani (2005) use the rank of a link-path incidence matrix B to verify if a system of 

linear equations is determinable, and to determine the number and locations of active sensors on specific 

links in order to provide additional path flow information to infer the complete flow estimates on all paths. 

By contrast, the rank of a given link-path incidence matrix L in the proposed basis link method is used to 

determine the number of (independent) basis link vectors in order to provide link flow estimates on the 
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Figure 4.1. Example Network. 

 

Table 4.1. Link-path incidence matrix of the network in Figure 4.1. 

Link number 1 2 3 4 5 6 7 8 9 10 

link 

path 
1-2 2-3 2-6 3-4 4-5 5-8 6-7 7-5 8-9 8-10 

1-2-6-7-5-8-9 1 0 1 0 0 1 1 1 1 0 

1-2-3-4-5-8-9 1 1 0 1 1 1 0 0 1 0 

1-2-6-7-5-8-10 1 0 1 0 0 1 1 1 0 1 

1-2-3-4-5-8-10 1 1 0 1 1 1 0 0 0 1 

 

Table 4.2. RREF of the link-path incidence matrix 

Link number 1 2 3 4 5 6 7 8 9 10 

       link 

path 
1-2 2-3 2-6 3-4 4-5 5-8 6-7 7-5 8-9 8-10 

1-2-6-7-5-8-9 1 0 1 0 0 1 1 1 0 1 

1-2-3-4-5-8-9 0 1 -1 1 1 0 -1 -1 0 0 

1-2-6-7-5-8-10 0 0 0 0 0 0 0 0 1 -1 

1-2-3-4-5-8-10 0 0 0 0 0 0 0 0 0 0 

 

Table 4.3. Link-path incidence matrix when 85link  is denoted as link 1 

Link number 1 2 3 4 5 6 7 8 9 10 

link 

path 
5-8 2-3 2-6 3-4 4-5 1-2 6-7 7-5 8-9 8-10 

1-2-6-7-5-8-9 1 0 1 0 0 1 1 1 1 0 

1-2-3-4-5-8-9 1 1 0 1 1 1 0 0 1 0 

1-2-6-7-5-8-10 1 0 1 0 0 1 1 1 0 1 

1-2-3-4-5-8-10 1 1 0 1 1 1 0 0 0 1 

                                                                                                                                                 
unequipped links via linear combination of the observed link flows. 
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Table 4.4. RREF of the link-path incidence matrix where 85link  is denoted as link 1 

Link number 1 2 3 4 5 6 7 8 9 10 

       link 

path 
5-8 2-3 2-6 3-4 4-5 1-2 6-7 7-5 8-9 8-10 

1-2-6-7-5-8-9 1 0 1 0 0 1 1 1 0 1 

1-2-3-4-5-8-9 0 1 -1 1 1 0 -1 -1 0 0 

1-2-6-7-5-8-10 0 0 0 0 0 0 0 0 1 -1 

1-2-3-4-5-8-10 0 0 0 0 0 0 0 0 0 0 

 

 

Property (d) indicates that the RREF of the link-path incidence matrix is unique. 

However, it does not imply that the basis for the vector space represented by a link-path 

incidence matrix is unique because the order of the basis links in the link-path incidence 

matrix is arbitrary. For example, if we swap the positions of 21link  and 85link  to obtain 

a different link-path incidence matrix (shown in Table 4.3) for the same network, its 

corresponding RREF is shown in Table 4.4. Here, the basis links are 85link , 32link , and 

98link . This result is consistent with the network structure because the flows on 21link  

and 85link  are identical. Note that the RREF in Table 4.4 is identical to that in Table 4.2. 

However, it represents a special case because some columns in L have identical elements; 

it also illustrates the notion of multiple solutions for the set of basis links. In general, the 

RREF for different link-path incidence matrices will be different. 

4.3 Inferring non-basis link flows from basis link flows 

For a traffic network under steady-state conditions, by the definition of link-path 

incidence matrix, the (1×n) link flow matrix F can be obtained as the product LPT 2
, 

where P is the static path flow matrix of the network of dimension (m×1). 

 

                                                 
2
 This is similar to the flow conservation equation described in Castillo et al. (2008a; 2008b) where a 

known matrix (F) relating link and O-D flows is obtained from the network topology. 
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where Lij is 0 or 1; and pi is the flow on the i
th

 path. 

Theorem 1. The non-basis link flows in the link flow matrix F can be obtained through a 

linear combination of the basis link flows whose coefficients are identical to the elements 

of the corresponding non-basis column vectors in the RREF of the link-path incidence 

matrix L. 

Proof.  

Suppose r is the rank of nmL ; then, based on the discussion in Section 2, there are 

r basis links. Let L
B

mr be the set of column vectors corresponding to the basis links in the 

network; ]   [ 21

B

r

BBB LLLL  , where B

jL  is the j
th

 (m×1) basis column vector in L. Let 

L
NB

m(n-r) be the set of column vectors corresponding to the non-basis links in the 

network; ]   [ 21

NB

rn

NBNBNB

 LLLL  , where 
NB

jL  is the j
th

 (m×1) non-basis column vector in L. 

Then, L can be rewritten as: 

 

] [ NBB

nm LLL                                                           (2) 

 

Also, let B

r1F  be the matrix of basis link flows; ]   [ 21

B

r

BBB FFF F , where 
B

jF  is the j
th

 

basis link flow. B

j

T
m

i

B

iji

B

j LpF LP
1

. Let 
NB

rn )(1 F  be the matrix of non-basis link flows; 
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]   [ 21

NB

rn

NBNBNB FFF  F , where NB

jF  is the j
th

 non-basis link flow. 

NB

j

T
m

i

NB

iji

NB

j LpF LP
1

. Then, F can be rewritten as: ] [1

NBB

n FFF  , and by 

extension: 

 

] [] [1

NBBTNBB

n LLPFFF                                               (3) 

 

We will now relate the non-basis column vectors in L to its basis column vectors. 

By the definition of basis, the j
th

 non-basis column vector of L (that is, NB

jL ) can be 

expressed as the linear combination of the r linearly independent basis column vectors. 

From properties (c) and (e) of the RREF, the associated linear combination coefficients 

are identical to the linear combination coefficients used to obtain the j
th

 column vector of 

T. Lemma 1 illustrates that these coefficients ( jjk
 ) are the column elements in the j

th
 

non-basis column vector of T. Thereby: 

 

rnjB

j

r

j

jj

NB

j k

k

k




 , . . . ,2 ,1 ,
1

LL                                            (4) 

where the scalar jjk
  is the linear combination coefficient corresponding to the th

kj  row 

in the j
th

 non-basis column vector in T. We will now express NB

jF  in terms of B

jk
F : 

(5)                                           . , . . . ,2 ,1,

 , . . ,.2 ,1 ,

1

1

1

1

rnjF

rnjLpF

B

j

r

j

jj

B

j

T
r

j

jj

B

j

r

j

jj

T

NB

j

T

m

i

NB

iji

NB

j

k

k

k

k

k

k

k

k

k

































LP

LP

LP

                                        

This completes the proof.                                                                                                     
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Theorem 1 illustrates a key characteristic of the proposed basis link method in 

solving the NSLP. It indicates that a direct mapping exists between the basis link flows 

and the non-basis link flows which can be obtained from the network structure 

(represented by the link-path incidence matrix). 

For the example network in Section 3.2, Theorem 1 indicates that sensors are 

required on only 3 of the 10 links so as to establish flows on all links. As can be seen in 

Figure 4.1, if flows are observed on link2-3, there is no need to observe them on link3-4 and 

link4-5. 

 

From Theorem 1, a direct observation is that links with the same column vector 

elements in the RREF of the link-path incidence matrix have the same flows, as discussed 

in Lemma 2.  

 

Lemma 2. Links which have identical column vector elements in the RREF T of L have 

identical flows. 

Proof. 

Based on the re-arranged T, we have ] [ NBB TTT  . From Theorem 1: 

 

. ..., ,2 ,1 ,
1

rnjFF
r

b

B

bbj

NB

j 


                                            (6) 

 

Suppose the column elements in link l are identical to those of link j. By property (d) of 

the RREF, since RREF T of L is unique, if we swap links l and j the RREF is identical to 

the previous one. There are two possibilities: 

(1) When link l is a basis link and link j is a non-basis link: 

Since link l is a basis link, its RREF column vector is a unit column vector with 

the l
th

 row element being 1. As the column vector elements in both links l and j are 

identical, it means that 1 and ,  ,except     ,0  ljbj rllbb  . From (6): 
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 B

l

NB

j FF  . 

(2) When both links l and j are non-basis links: 

Since the column vector elements in both the non-basis links are identical, it 

implies that bblbj   , . From (6):  

 NB

l

NB

j FF  . 

This completes the proof.                                                                                                     

 

The inference in Lemma 2 can be obtained by simply observing L directly. This is 

because column vectors with identical elements in the RREF also imply that the 

corresponding column vectors in L are identical. Since LPF T , and P is the static path 

flow vector, column vectors in L which are identical will imply identical flows for the 

corresponding links. 

It should be noted here that the network topology is a key determinant of the 

number of sensors to be installed. As a starting point, since the rank of a link-path 

incidence matrix is not greater than the number of rows or columns, the number of the 

basis links is not greater than the number of paths or links of the network. However, in a 

general traffic network where the number of paths is typically greater than the number of 

links, if the rank of the link-path incidence matrix is equal to the number of links in the 

network, the minimum subset of basis links will imply all links of the network. This is 

not a limitation of the proposed approach, but a reflection of the primacy of the network 

topology in the NSLP context. Further, as will be illustrated in Section 4.5, there may be 

an upper bound on the number of basis links that is governed by the network topology 

irrespective of the total number of links in the network. That is, there will be practical 

instances where the number of basis links will always be less than the total number of 

network links. This suggests that it is beneficial to use the basis link method independent 

of the scale of the network. 

Another aspect to be noted is the possibility of the existence of multiple solutions 

in terms of the set of basis links. From a practical standpoint, it would imply a different 
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subset of links on which sensors should be installed. However, this will still imply a 

unique set of link flows for the network links as shown in Lemma 3.  

 

Lemma 3. The network link flows inferred by different sets of basis links are unique. 

Proof. 

For a given network, assume that B represents the set of basis links. It allows the 

partitioning of L into ] [ NBB
LL .  

From (3), 

] [1

NBBTT LLPLPF  . 

 

If multiple solutions exist for this network in terms of the set of basis links, let B’ 

represents another set of basis links. Then: 

]' '['2

NBBTT LLPLPF   

This implies that at least one basis link j in B has shifted to the set of non-basis 

links NB’. However, the elements in L of the column vector associated with the shifted 

link remain unchanged. That is: 

j

NB

j

TB

j

T F 'LPLP . 

This is true for all links that shift between the basis link set and the non-basis link 

set. 

Hence, flows are unique irrespective of whether the associated link is in the set of 

basis links or non-basis links. 

This completes the proof.                                                                                                    

4.4 Discussion on multiple solutions 

As illustrated through the example in Section 4.2, multiple solutions in terms of 

the set of basis links can exist for a given network structure represented by the link-path 

incidence matrix L. Since the ordering of the column vectors in L is arbitrary, the column 

positions of the links in L can decide the set of basis links due to the steps of the 

Gaussian elimination algorithm for the RREF. Hence, if multiple solutions exist, they can 

be determined by simply varying the specific locations of link column vectors in L. In the 
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algorithm, the leftmost columns are processed first to identify basis links. Hence, if traffic 

agencies prioritize links in some order of importance, they can be considered seamlessly 

in the proposed basis link method by assigning the higher priority links to the leftmost 

columns in L. Next, we identify some characteristics of L or T that imply multiple 

solutions in terms of the basis link set.  

4.4.1. Identical column elements in L or T 

By Lemma 2, any pair of columns with identical coefficients in L or T will have 

the same link flows. Hence, a non-basis link with a column vector in L or T that is 

identical to that of a basis link can be swapped with the basis link to enter the basis. This 

implies multiple solutions in terms of the set of basis links. 

4.4.2. Swappability of the column pairs in T 

If a pair of columns in T does not have identical column elements, multiple 

solutions exist if they are swappable. Here swappability means that after swapping any 

column pair, the non-basis link becomes a basis link, and the basis link becomes a non-

basis link. To illustrate swappability, we will derive one condition under which it exists 

as an example. 

Let the column elements for a pair of swappable links be different. Let us assume 

that after the swap, the column elements of the j
th

 non-basis link (which was previously 

the l
th

 basis link) are identical to the column elements in the original j
th

 non-basis link 

(which is now the l
th 

basis link). If the column elements are T

rjljjj ]     [ 21   , then 

from (5): 

 









r

lb

B

bbj

B

llj

l

b

B

bbj

NB

j FFFF
1

1

1

                                         (7) 









r

lb

B

bbj

NB

llj

l

b

B

bbj

B

j FFFF
1

1

1

                                         (8) 

 

Subtracting Eq. (8) from Eq. (7): 
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1

)(





lj

NB

j

B

llj

B

l

NB

j FFFF




 

 

Moreover, since link l is the basis link whose column elements are a unit column 

vector with the l
th

 row element being 1, 1ll . Hence, if 1ll  and 1lj , multiple 

solutions exist if the remaining column elements for the non-basis link are identical for 

the pair of swappable links. 
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CHAPTER 5.  NUMERICAL ANALYSIS AND INSIGHTS 

Chapter 5 studies the capability of the proposed basis link method for the NLSP 

and reveals the implications for field applications. Section 5.1 analyzes five test networks 

to demonstrate the applicability of the proposed basis link method to solve the NSLP and 

to derive related insights. The networks considered consist of the following topologies: 

parallel highway network, fishbone network, radial network, complete network, and a 

network proposed by Yang and Zhou (1998) labeled Yang’s network here. Section 5.2 

performs sensitivity analysis on the effects of network topology and number of O-D 

pairs/paths on the minimum subset of links to be installed with vehicle sensors. 

5.1 Effect of network topology 

5.1.1. Parallel highway network 

The parallel highway network shown in Figure 5.1 is analyzed using the basis link 

method. It consists of 4 O-D pairs, 14 links, and 9 nodes. Nodes 1 and 2 are trip origin 

nodes, and nodes 8 and 9 are the destination nodes. Table 5.1 illustrates the link-path 

incidence matrix for the network. The Gaussian elimination algorithm is used to obtain its 

RREF (Table 5.2). The basis links correspond to the 9 shaded columns in the table. They 

include links 1, 2, 3, 4, 5, 7, 9, 11, and 13. They represent the links on which to install 

vehicle sensors. Hence, about 64% of the links need to be equipped with sensors to 

estimate the flows on all links in the parallel highway network under steady-state 

conditions. 
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Figure 5.1. The Parallel Highway Network. 

 

Table 5.1. Link-path incidence matrix of the parallel highway network 

Link number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

link 

path 
1-3 1-4 2-4 2-3 3-5 3-6 4-5 4-7 5-6 5-7 6-8 6-9 7-8 7-9 

1-3-6-8 1 0 0 0 0 1 0 0 0 0 1 0 0 0 

1-3-5-7-8 1 0 0 0 1 0 0 0 0 1 0 0 1 0 

1-4-7-8 0 1 0 0 0 0 0 1 0 0 0 0 1 0 

1-3-6-9 1 0 0 0 0 1 0 0 0 0 0 1 0 0 

1-3-5-6-9 1 0 0 0 1 0 0 0 1 0 0 1 0 0 

1-4-7-9 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

2-4-5-6-8 0 0 1 0 0 0 1 0 1 0 1 0 0 0 

2-4-7-8 0 0 1 0 0 0 0 1 0 0 0 0 1 0 

2-3-6-8 0 0 0 1 0 1 0 0 0 0 1 0 0 0 

2-4-5-6-9 0 0 1 0 0 0 1 0 1 0 0 1 0 0 

2-4-7-9 0 0 1 0 0 0 0 1 0 0 0 0 0 1 

2-3-6-9 0 0 0 1 0 1 0 0 0 0 0 1 0 0 
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Table 5.2. RREF of the parallel highway network 

Link number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

link 

path 
1-3 1-4 2-4 2-3 3-5 3-6 4-5 4-7 5-6 5-7 6-8 6-9 7-8 7-9 

1-3-6-8 1 0 0 0 0 1 0 0 0 0 0 1 0 0 

1-3-5-7-8 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

1-4-7-8 0 0 1 0 0 0 0 1 0 0 0 0 0 1 

1-3-6-9 0 0 0 1 0 1 0 0 0 0 0 1 0 0 

1-3-5-6-9 0 0 0 0 1 -1 0 0 0 1 0 -1 0 1 

1-4-7-9 0 0 0 0 0 0 1 -1 0 1 0 0 0 0 

2-4-5-6-8 0 0 0 0 0 0 0 0 1 -1 0 1 0 -1 

2-4-7-8 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 

2-3-6-8 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 

2-4-5-6-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2-4-7-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2-3-6-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

5.1.2. Fishbone network 

The second network analyzed is the fishbone-shape network shown in Figure 5.2. 

It contains 4 O-D pairs, 18 links, and 10 nodes. Nodes 1 and 2 are the origin nodes, and 

nodes 9 and 10 are the destination nodes. The RREF of the link-path incidence matrix of 

the fishbone network is obtained by the Gaussian elimination algorithm and identifies 12 

basis links: 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, and 17. Hence, in this 18-link network, only 

12 sensors are needed to obtain the flow information on all links. Thereby, only 67% of 

the network links need to be equipped with sensors. 

1

2

3

6

7

8

9

10

4

5

 

Figure 5.2. The Fishbone Network. 



 

 

28 

5.1.3. Radial network 

Figure 5.3 shows a radial network with 7 O-D pairs, 20 links, and 7 nodes. Nodes 

1, 2, and 7 are origin nodes, and nodes 1, 4, and 7 are destination nodes. The RREF 

associated with this network is also obtained by the Gaussian elimination algorithm. It 

indicates that sensors ought to be installed on 14 of the 20 network links. Therefore, 70% 

of the network links need to be equipped with sensors. 
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Figure 5.3. The Radial Network. 

 

5.1.4 Complete network 

A bidirectional complete network has n(n-1) links, where n is the number of 

nodes. Figure 5.4 shows a complete network consisting of 6 O-D pairs, 30 links, and 6 

nodes. Nodes 1 and 2 are the origin nodes, and nodes 3, 4, and 5 are the destination 

nodes. The RREF of the link-path incidence matrix of the complete network identifies 18 

basis links. Thereby, 60% of the links need to be equipped with vehicle sensors in order 

to infer the flows on the unequipped links. 
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Figure 5.4. The Complete Network. 

 

5.1.5. Yang’s network 

To test the applicability of the proposed basis link method to more general 

network cases, a larger network proposed by Yang and Zhou (1998) is adopted (see 

Figure 5.5). The network consists of 182 O-D pairs, 76 links, and 24 nodes. The shaded 

nodes in Fig. 6 represent both trip origins and destinations. For each O-D pair, one to five 

paths exist depending on their spatial locations, resulting in 368 paths. The RREF of the 

link-path incidence matrix of Yang’s network identifies 62 basis links. Hence, 81% of the 

links need to be equipped with sensors to estimate the flows on all links; they are shown 

in Figure 5.6. 
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Figure 5.5. Yang’s Network. 
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Figure 5.6. Spatial Locations of the Basis Links on Yang’s Network. 
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5.1.6. Insights 

Table 5.3 summarizes the results of the basis link method to identify the minimum 

subset of links to equip with sensors for the five test networks. It indicates that while the 

number of basis links is related to the network scale in terms of the number of links/nodes 

or used paths under different network topologies, there is no direct correlation between 

the number of links/nodes or used paths in the network and the percentage of links to 

install sensors on. That is, the network topology, in terms of how the links and nodes are 

connected in the physical structure of the network, is a key determinant of the set of basis 

links. This is logically consistent because the link-path incidence matrix, which implies 

the network structure, is the foundation for the proposed basis link method. Table 9 also 

indicates the computational CPU time for each test network. The computational time is 

primarily to obtain the RREFs of the link-path incidence matrices associated with the test 

networks. The RREFs were obtained using MATLAB V6.0 on an Intel Centrino Duo 

T5600 1.83 GHz Windows XP SP2 OS platform with 2GB memory. 

 

Table 5.3. Comparison of the five test networks 

                Item 

Network 

Number 

of O-D 

pairs 

Number 

of 

nodes 

Number 

of paths 

(m) 

Number 

of links 

(n) 

Number 

of basis 

links (r) 

% of links to 

be equipped 

with sensors 

CPU 

time 

(sec) 

Parallel highway network 4 9 12 14 9 64% 0.01 
Fishbone network 4 10 22 18 12 67% 0.02 
Radial network 7 7 22 20 14 70% 0.03 
Complete network 6 6 30 30 18 60% 0.06 
Yang’s network 182 24 368 76 62 81% 1.60 

 

5.2 Sensitivity analysis 

This section explores the effect of network topology and number of O-D 

pairs/paths on the number of basis links. The minimum subset of links and the percentage 

of links to be installed with sensors are determined in the following contexts: (1) effect of 

network scale in terms of the number of links/nodes, (2) effect of network topology in 

terms of network connectivity, (3) effect of number of O-D pairs, (4) effect of number of 
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used paths, and (5) effect of the network degree. The sensitivity analysis is based on the 

fishbone and radial network structures, and modifications thereof. 

5.2.1. Effect of network scale 

We investigate the effects of network scale by adding more links and nodes to the 

original fishbone network. Two modified fishbone-shape network structures are 

analyzed, in addition to the original fishbone network. 

(1) Modified fishbone network I: Figure 5.7 illustrates the modified fishbone network I. It 

is obtained by adding two more nodes: 11node  and 12node , and four links: 116link , 

911link , 12-7link , and 1012link . Therefore, the new network contains 22 links and 12 

nodes. The origin nodes (1, 2) and destination nodes (9, 10) remain unchanged.  

(2) Modified fishbone network II: The modified fishbone network II, shown in Figure 5.8, 

is obtained by extending the modified fishbone network I by adding four more links: 

11-3link , 811link , 125link , and 812link . Therefore, the new network contains 26 links and 

12 nodes. The origin and destination nodes are unchanged.  

Table 5.4 compares the three fishbone networks in terms of the number of basis 

links and the percentage of links to be equipped with vehicle sensors. It indicates that the 

number of basis links generally increases as the number of links/nodes is increased. 

However, the percentage of links to be equipped with sensors for a larger network (the 

modified fishbone network II) is not necessarily larger than that for a smaller network 

(the modified fishbone network I). It reiterates the conclusions in Section 5.1.6 on the 

role of network topology. 
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Figure 5.7. Modified Fishbone Network I. 
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Figure 5.8. Modified Fishbone Network II. 
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Table 5.4. Effect of network scale 

Network Network configuration and the basis links 
Number of 

nodes 

Number of 

paths (m) 

Number of 

links (n) 

Number of 

basis links (r) 

% of links to 

be equipped 

with sensors 

Fishbone Network 

 

10 22 18 12 67% 

Modified Fishbone 

Network I  

 

12 45 22 17 77% 

Modified Fishbone 

Network II 

 

12 41 26 18 69% 
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5.2.2. Effect of network connectivity 

We explore the effect of network connectivity by changing the in- and out-

degrees of the original fishbone network, while retaining the numbers of links and nodes 

of the original fishbone network. The new network structure, shown in Figure 5.9, is 

labeled the modified fishbone network III. Table 5.5 compares the original fishbone 

network and the modified fishbone network III in the context of the basis link method. It 

indicates that there is no clear correlation between the number of links/nodes and the 

number of basis links. Instead, it illustrates that the connectivity implied by the network 

topology affects the number of basis links, confirming the insights of Section 5.1.6. It 

also hints at a relationship between the number of paths being used and the number of 

basis links; this will be addressed in Section 5.2.4. 
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Figure 5.9. Modified Fishbone Network III. 
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Table 5.5. Effect of network connectivity 

 

Network Network configuration and the basis links 
Number of 

nodes 

Number of 

paths (m) 

Number of 

links (n) 

Number of 

basis links (r) 

% of links to 

be equipped 

with sensors 

 

 

Fishbone Network 

 

10 22 18 12 67% 

 

 

 

Modified Fishbone 

Network III 

2

1

3

4

5

7

6

8

10

9

 

10 16 18 9 50% 
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5.2.3. Effect of the number of O-D pairs 

The effect of the number of O-D pairs on the percentage of basis links is 

investigated by incrementing the number of O-D pairs by 1 in the range of 1 – 8 for the 

original fishbone network, and assuming 3 paths per O-D pair. Table 5.6. indicates that 

the percentage of links to be equipped with sensors increases with the number of O-D 

pairs up to a point, beyond which there is no effect. That is, this percentage has an upper 

bound of 78%, implying that the network topology may make it unnecessary to observe 

additional link flows to infer them for the entire network. The results also indicate a 

correlation between the number of paths and the number of basis links. 

5.2.4. Effect of the number of paths 

Here, the number of paths per O-D pair for each of the 4 O-D pairs of the original 

fishbone network is assumed to take values of 4, 8, 12, 14, and 16, resulting in a total of 

16, 32, 48, 56, and 64 paths, respectively, for the entire network. The numerical results, 

shown in Table 5.7, indicate that the percentage of links to be equipped with sensors 

increases with the number of paths up to an upper bound of 78%. It reinforces the 

insights of Section 5.2.3 related to the role of network topology on the upper bound. 

5.2.5. Effect of the network degree 

The effect of the network degree is examined using complete and incomplete 

networks. The complete network shown in Figure 5.4 is adopted as the baseline case 

(scenario 1); the number of basis links is 16 and the percentage of links to be equipped 

with sensors is 60%. By retaining this network shape and the number of nodes, two 

incomplete networks consisting of 20 and 16 links are evaluated (scenarios 2 and 3, 

respectively). The results, shown in Table 5.8, indicate that the number of basis links 

decreases with a decrease in the network degree represented by the number of connected 

arcs. However, the percentage of links to be equipped with sensors for the complete 

network is 60%, which is less than those for the two incomplete networks (70% and 81%, 

respectively). This suggests that complete connectivity offers more opportunities for 

relationships involving link flows, thereby reducing the percentage of links that need to 

be equipped. 
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Table 5.6. Effect of the number of O-D pairs 

Scenario Network configuration and basis links  

Number 

of O-D 

pairs 

Number 

of paths 

Number 

of basis 

links 

% of links to 

be equipped 

with sensors 

1 

2

1

3

4

5

7

6

8

10

9

 

 

 

1 

 

 

3 2 11% 

2 

2

1

3

4

5

7

6

8

10

9

 

2 6 6 

 

33% 

 

3 

2

1

3

4

5

7

6

8

10

9

 

3 9 9 50% 
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4 

2

1

3

4

5

7

6

8

10

9

 

4 12 12 67% 

5 

2

1

3

4

5

7

6

8

10

9

 

5 15 13 72% 

6 

2

1

3

4

5

7

6

8

10

9

 

6 18 13 72% 

7 

2

1

3

4

5

7

6

8

10

9

 

7 21 14 78% 
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8 

2

1

3

4

5

7

6

8

10

9

 

8 24 14 78% 

 

Table 5.7. Effect of the number of paths 

Scenario Network configuration and basis links  
Number of 

paths 

Number of 

basis links 

% of links to 

be equipped 

with sensors 

1 

2

1

3

4

5

7

6

8

10

9

 

16 8 

 

44% 

 

2 

2

1

3

4

5

7

6

8

10

9

 

32 13 

 

72% 

 

3 

2

1

3

4

5

7

6

8

10

9

 

48 14 78% 
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4 

2

1

3

4
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7
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56 14 78% 

5 

2

1

3

4

5

7

6

8

10

9

 

64 14 78% 

 

Table 5.8. Effect of the network degree 

Scenario Network configuration and basis links  
Number of 

paths 

Number 

of links 

Number of 

basis links 

% of links to be 

equipped with 

sensors 

1 

1

2 5

3 4

6

 

30 30 18 

 

60% 
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2 

1

2 5

3 4

6

 

30 20 14 

 

70% 

 

3 

1

2 5

3 4

6

 

27 16 13 81% 

 

5.2.6. Insights 

The sensitivity analysis suggests no direct relationship between the percentage of 

links to be equipped with sensors and the number of links/nodes in a network, though a 

positive correlation between the number of basis links and the number of links/nodes or 

paths is generally observed. The key determinant for the minimum subset of links to be 

equipped with sensors so as to infer the flows on all links is the network topology 

represented by the link-path incidence matrix. The results also indicate that there may be 

an upper bound on the number of basis links that is governed by the network topology 

independent of the scale of the network. A practical benefit of such upper bounds is that 

it may be unnecessary to install sensors on all links, leading to cost savings for the traffic 

agency. 
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CHAPTER 6.  CONCULSIONS 

This chapter summarizes the research, highlights its contributions, and proposes 

directions for future research. 

6.1 Summary 

This study addresses the two primary objectives: 

1. Addresses the network sensor location problem (NSLP) directly so as to 

obtain the unobserved link flows given the minimum subset of observed link flows 

provided by passive counting sensors. 

2. Analyzes the corresponding theoretical aspects related to the proposed 

basis link method in the determination of the minimum subset of network links to infer 

unobserved link flows. 

This study proposes a basis link method to address the network sensor location 

problem under steady-state traffic conditions. A fundamental contribution of this research 

is the illustration of a direct mapping between the basis link flows and the non-basis link 

flows, which can be obtained from the network structure represented by the link-path 

incidence matrix. Based on the theoretical investigation and numerical analysis, several 

findings are listed below. 

1. Given the network structure represented by its link-path incidence matrix, 

a theoretical minimum subset of network links provided by the reduced row echelon form 

(RREF) algorithm does exist, and a direct mapping between the basis link flows and the 

non-basis link flows is also theoretically proved.  
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2. The study illustrates the possibility of multiple solutions in terms of the set 

of basis links. However, as shown by one of the Lemmas, that does not affect the 

uniqueness in terms of the inferred link flows. 

3. The empirical analysis highlights the primacy of the network topology in 

determining the set of basis links. It also indicates the possibility of an upper bound on 

the number of basis links based on the topology, suggesting that it may not be necessary 

to equip every link with sensors from a planning perspective. 

4. While the number of basis links is related to the network scale in terms of 

the number of links/nodes or used paths under different network topologies, there is no 

direct correlation between the number of links/nodes or used paths in the network and the 

percentage of links to install sensors on. 

5. The sensitivity analysis suggests no direct relationship between the 

percentage of links to be equipped with sensors and the number of links/nodes in a 

network, though a positive correlation between the number of basis links and the number 

of links/nodes or paths is generally observed. 

6.2 Future research directions 

This research has proposed a linear algebraic approach for the determination of 

the minimum subset of equipped links to infer the flows on the unobserved links. The 

proposed basis link method provides network full observability without requiring any 

assumptions in terms of the knowledge of O-D flows, path flows, user route choice 

behavior, or traffic assignment rules. This property has broader implications in terms of 

potentially aiding in solving a range of problems (such as O-D demand estimation, travel 

time estimation, traffic assignment) in both the static and dynamic contexts. Therefore, a 

straightforward research direction is to estimate O-D demands for a general network, in 

an integrated manner, based on the (full) link flow information provided by the proposed 

basis link approach. Further, the existence of multiple solutions provides some flexibility 

for traffic agencies in choosing the links to install sensors on. That is, a traffic agency 
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may prefer to install sensors on some links because of their importance based on one or 

more criteria related to objectives such as minimizing deployment costs, reducing traffic 

impacts, or the relative importance of a link (based on the facility type or its criticality for 

disaster response, etc.). In such instances, priority rankings provided by the agency can 

be seamlessly adapted with the proposed basis link method. This is another immediate 

research issue that is worthy of further investigation. 
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